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1. introduction

In geodesy and geophysics we frequently meet with the
situation that a model defined by a set of , say, N parameters
is to be determined from a smal ler num ber n < N of observations.

As an example , the internal structure of the earth may be
defined by a set of N parameters describing the density, the
rigidity , and the compressibility of the earth as a function of
depth. The n observations comprise velociti es of seismic sur-
face waves , together with the mass and the polar moment of in ertia
of the earth. If the model for the earth ’ s internal structure is
to be realistic , then N will be large and n N

We thus have n < N equations for N unknowns , which is
obv~ oasly an underdetermined problem admitting an infinit e number
of possible solutions. Using standard mathematical termin ology
(Lanczos , 1964), we have an i~~ roper ly posed problem. (A problem
is properly posed if it has a uniq ue solution that depends con-
tinuously on the data.)

Origina l l y, the equations expressing the data x . as
functions of the model par ameters S

r 
will , in general , be non-

linear:

x~ = f.(s l ,s2 ,...,sN) , i = 1 ,2,...,n . (1— 1 )

By a suitable application of Tayl or ’ s theorem it is usually
possible to approximate these equation s by linear ones:

N
= )‘ a . s , (1-2)

1 I r  rr = 1

or in matrix notation:

x = A s . ( 1 - 3 )

- -~~~~ - — 
—~~~~~--— S— — 

- 
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The formal solution of this system of linear equati ons
may be written as

= A 1 x . (1-4)

If A were a regular square matrix , then A 1 would be the or-
dinary inverse matrix of A . In our underdetermined case , how-
ever , A 1 must be understood in the sense of generalized matrix
inverses (cf. Bjerharnma r , 1973; Rao and litra, 1971).

At any rate, the solution of (1-1) or (1-3) may be con-
sidered as an inversion of these equations with respect to the
parameters S

r 
which accounts for the name , geophysical inverse

problems.
Another typica l example of an “improperly posed ” inverse

pro ol eni is the determination of subsurface mass distributions
which produce a given anomalous gravity field at the earth ’ s sur-
face. This problem is sometimes called an inverse probl em of po-
tential theory (Lavrentiev , 1967; Burkhard and Jackson , 1976).

The determination of the earth ’ s external gravitational
field from geodetic , gravimetric and satellite data may al so be
considered as an inverse problem that is mathematically quite
similar to the determination of the internal structure of the
earth from seismic and other data.

This geodetic inverse problem is likewise underdet erm ined .
The external gravitational field requires for a complete de-
scription an infinite number of parameters , for instance , the set
of all coefficients in the expansion of the external gravitational
potential in spherical harmonics. This infinite number , N = -

~~
-

of parameters is to be determined from a finite number n of
observations.

Even in the seismic inverse problem it is , at least theo-
retically, appropriate to take N = if we wish to ad mit rca-

I - - — - —-.~~~~~~~~~~ -- -- -~~~--- -----—~~~~~--~~~~-. — - - -~~~~~~~~~ -j - .— -- ---~~~~~~~
~-
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son ab l y genera l f u n c t i o n s  Thr den~~ity , ri~~:dity , anu c om press i—
b fl ity because i t cannot be a S S ~~r~~ J a p r iu ,- i that such functions
d e pen d on a f i n it e n u m ber of p a r a m e ters  o n l y.

T h u s , in gene -’-al , t he s p ace  of parameters wil J be infinite-
dimensional rather than N -di m ension al. In other words , the ~rope r

general se tting for (linear) geodet i c and geophysical inve -s ~
problems wi l l  be infinite-di m ensional Hu bert space. This was
pointed out by Krar~ p (1969) for the geodetic case and by Ba cK.is
(1970) for geo physical inverse problems.

The geo d e ti c i n v e r s e  p ro b l e m , the determination of the

external gravitational field from data of d i fferent kind , is usu-

ally solve d by least—squares collocation. Th i s technique has r:lany

fea tures in common with other geophysical inversion methods. It
ma y. tnerefore , be of interest to compare these techniq ues and tc

e x hibit some cross-connec tions.

Ue shall also discuss least—squares collocation from the

p o i n t  of v i e w  of a n a l y t i c a l l y re p r e s e n t i n g the ex t e r n a l  g r a v i-
tat ional field b y a l i n e a r  combination of suitable simp l e r  har-
mon ic functions. -

The sub ject of the present report is purely concept ua ,

a im ing at a better understanding of least-squares collocation by

c o n s i d er i ng  ~t i n  i s r e l a ti on to o th er me t ho d s , no n e w  com p u-
tational formulas wil l  be derived. Sti l l , this paper might be

• useful as a contribution to the present discussion on the con-

ceptual foundations of leas t-squares collocation.

I

2 . Sys t ems of L i n e a r  L q u a ti o n s

Le t us assume that the geophysical or geodetic in ver sio n

pro blem has already been linear i zed , so tha t it reduces to the

solution of a sys ter of linear equations of form (1—3),

________ 
-j ~~~~~~~~~~~~~ -~~~~~ 
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= ~~
. 
, (?-i )

- 
s being the vector of ~ para m eters to be determined , x de-
no ting the vector of n observati ons , arid B being a given

nxN matrix of coefficients.
Assuming n < N , we have an un derdetermined problem. The

number N of parame ters may be finite or infinite. For N =

we must presuppose that the occurrin g sums from 1 to N , wni c h

are now infinite series ,converge; otherwise the formal opera-
tions are the same as for a finite N

Equations of type (2-1) may be formulated for seismic
inversion problems (Knopoff and Jackson , 1973), for gravity inter-
pretation problems (Burkhard and Jackson , 1976; Kaula et al . , 1975),
as well as for the geodetic problem of determining spherical har-

monics of the geopotential from satellite obs~ rvations by least-

squares collocation (Schwarz , 1974 , 1975).

A general solut ion of the under deterrnined system (2-1)

(assumed full rank ) is

~~~
T

(~~~~~~
T

)
-1

x , (2-2)

where C is a N x N matrix such that BCB T is a regu t ar n x n
matrix. Otherwise C is arbitraty : different solutions are ob-
tained by different choices of C , and this gives an infinite
set of possible solution vectors S

It is immediately verified that (2-2) satisfies the given
system (2—1). Less obvious but also well known from the theory of —

generalized inverses (cf. Bjerhammar , 1973 , p.116) is the fact $

that the solution (2—2) satisfies the minimum condition

= minim um , ( 2 - 3 )

provided the inverse matrix C 1 exists in an appropriate sense

,—~~~~—..~~~~-—.—-.--•-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —---- - - - -
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( f o r ‘
~ 

= -‘ this i~ip i i e s  convergence of any occurring i n f i n i t e
sums )

U s u a l l y tne hie a sur~ t 1ent s x w i i l  be a ffeLted by unknown
observational err o’ s , denot ~’d by ri , t n e  n otatio n f oil o ~~ tn e
terminology of tim e series: g stan us for s i gnal , and ‘ n ”

stands for “ no i se ’ . (Here is hardly any danger of confu sing n
the noise vector , with n , the number of observations. ) Then

(2-1) is to be replaced by

Bs + n = x . (2-4)

An ap propriate minimum concition , instea c of (2-3), i s now

+ flT D
_ i

fl m i n i m u m , (~~-3)

w h e r e  C an d D a r e  symme t r i ca l  ma t r i ces tha t c a n  b e i n ter p re te d

~.tatistic al l y as covariance iat r ices: C is the covariance matrix

of t he s i g n a l  s , an d D is the covariance matrix of the noise

n , t h a t i s , of the observational errors.

The solu tion of (2-4) under the min i m u m  condition is found

to be

= ~~~ T
(~~~~~~T 

+ D ) ~~~x . (2-6)

• Th is solu tion has been used for geophysical inverse problems

(W iggins , 1972 , pp .260—i ; Burkhard and uackson , 1976 , p .1514).

• It is also the solution obtained by least-squares collo-

cat ion (Schwarz , 1974). To is is clear froM the conditi on (2-5)
an d may also be derived directly as follows.

T h e  b a s i c  c o l l o c a t i o n  mo d el i s

= + !‘ + ( 2 ~~? )

_ _  ~~ T .  ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T~~T~~~ ~~~~~~
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(~i o r i t z, 19/ 2 , p. !), wIie r~ s ’ i ’ the r,i r~~ii , i ‘s i g n u  I p i r t ” uf

the observations x and X denotes non-random (system atic )
parameters. If X = 0 , t he mo d el (2-7) reduces to

x = s ’ n . (2-a)

If the vector s ’ is expressed as a linear combination Bs of
“ b a s i c s i g n a l s ” (inth e geodetic case , e.g ., spherical harmo nic

coefficients ) , then (2-8) becomes

x = Bs + 
~ 

(2-9)

which , in fact , is the model (2-4), the “parameters ” s now
being treated as random variables.

The collocation solution follows from eq. (2-36) of
(Moritz , 1972 , p .lS) for X = 0

— 1s = C C x , (2-10)
— —sx—xx—

which is essentially nothing but the fundamental Wiener-Kolmogorov
prediction formula (cf. Lie belt , 1967; he calls i t Gauss—Markov

theorem ). The matrix C is the covariance matrix of the vector—xx
x , and C is the cross -covariance matrix between the vectors

and
We assume the vectors s and n to be uncorrelated .

Then the application of covarian ce propagation (Moritz , 1972 , p.97 )
gives readily.

= BCB ” + D  , (2-11)

= (2-12)

I-
-~~~-~~

--
~~~~~~~~~ ~~~1 ~~~~
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C ~ein g the c ovariance m atrix f tne ve ctor s . nu s , i n o u r
cas~~, (2—10 ) in fact Decu~ es (~~-b ) .

Le t u s  n o .~ turn to tne accuracy of t he  c s t i m a t e d  s i g n a l
S . This accuracy is u s u a l l y d efi ned by toe error cova r i a n ce
m a t r i x  

~~~ 
c o n s i s t ~~ng of e r ro r  v a r i a n c e s  ( s q u a r e s  of s t a n d a r d

errors) as dia g onal te rm s and error covariances as off—diagon al

terms.

If we a bbreviate (2-6 ) as

s = L x , (2- 3)

t hen E is ~iven by eq. ~3-20 ) of (~~oi ’itz , 1~ 72 , p .29)

~~ss 
= 

~~ss 
- 

~~
-
~~~~~~ :- 

- 

S~~
L + 

~~~~~~~~~~~~ 
. (2-14)

~ ith C = C and (2-11 ) and (2-12 ), this becomes

= - - cc T L +  L ( B C B ~~+ J ) L T

T h i s  i s rea di l y g i v e n  t h e f o r m

E = E , — E . , (2-15 ~—ss — i —
~~?

I
-~ne re

= (
~~ 

- 

~ (~~5 )
T

C = D L T (2- 17 )

~ 

~~~~~~~~~~~~~~ -~~~~~~~-~~--  -- _. T T 1 ~~~~11 - - --~~~ -~ 



~ 

I denoting the unit matrix. This form provides an elegant de-

composition of the error cov a rian ce matrix E which has the
— s s

following interpreta tion (Burkhard and Jackson , 1 976 , p .1514).

Let us write (2-13) in the form

(2-1 8)

where the notation ~ is to indicate that we are dealing s i t ,
the estimated value of the signal. ~ie now substitute into this
formula eq. (2-4),

= Bs + n , (2-19)

in which s and n denote the “true ” values . The result is

= L B s + Ui , (2-20)

so that the “true error ” of the signal , defined as estimated
value ~ minus true value s , is given by

- s = (LB - I)s + ~n . (2-21)

The firs t term on the right-hand side ,

= (
~~ 

- !).~ ‘ (2-22 )

denotes the resciving error , due to the d ev i at i on of t h e  pro d uc t

LB from the un it rii atrix I : if the system (2-1) cou lc ~ be

exactly solved--B being a regular square matrix--then wou l d

be zero. The second term ,

= L n  , (2-23)
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expresses s i m p l y  the effect of data erro rs propagatin g into toe

solut ion. C l early, C 1 is tbe c ov u riance im a t r i x  of e . anu
the covar iance mat r ix of e ; C cnu C s itt p y add in (2-
because e . an d e , a re un c o r r - e~ a:ed , aci n g lir ,ea r fu nctions

of the uncorr em ated vec tors s and n , res p ec t i v e l y.

We have at length considered underdetermined systems , be-
cause they are typical for geophysical inversion problems anc

for the determination of the gravitational field. As regards

(full-rank ) over deter niirm ed systems , the model (2-4) can still be

used  w it h B as a “ s t a n d i ng ” i ns tead of a “ly in g ” rec t an g u l a r
matrix , the vec tor s having now less components than the vector

x , N < n . Tne condition (2— 5) gives again a solution which is

formall y i dentical to (2— 6).

The  new f e a t u r e , peculiar to the overdeterr nined case

n > ~ , is that now the follow ing well-known transformation
(cf. Liebelt , 1967 , p.30) can be applied :

= ( B TD ’B+C 1 ) ’BT3 1 
. (2-24)

T h u s , for the overde term ined case , (2-6) is equivalent to

= (B TD B+ C
_ i

)~~~B T U
_ l

x . (2-25)

This form has the advantage of permitting an easy transition to

least-squares adjustment by p a a .~iete r s: the condition for this

case ,

T - l  .n 0 n = m i n i m u m , (2-26)

ar ises from (2-5) by l ett i ng C~~ 0 ; in the same way, (I -d5 )

b ecomes  



— ‘
I’
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= (BTD~~ B) ’’
~~D~~ x ( 2- 27 )

whi ch is the classical least—squ ares solution of (2—4) if it is

an overdeter m ined system .
It may be m entioned that the two elementary cases of

classical least-squares adjustment , namely adjustment by para-
meters and adjustment by conditions , come out as limiting cases
of the general model (2-6). They are , so to speak , at extr eme
ends of the scale: for overdetermined systems , (2-6) gives (2-27)
for C 1 

-÷ 0 , as we have just seen. For underdetermined systems ,
(2-6) becomes (2-2) on letting U - 0 . However , (2-6) is for-
mally identical to the re sult of least-squares adjustment by
conditions , on interpreting s now as measuring errors; cf. eq.
(12.1:11) of(B jerhammar , 1973 , p .166) with our eq. (2—2) for
C = I

Complete Sets of Solutions. - An interesting qu estion is
the problem of d etermining the set of all “reasonable ” gravi-
tational fields that are compatible with the set of all avail-
able geodetic data. Each me asurement (such as terrestrial gravity
or satellite data ) gives an equation , which , on linearization ,
provides one of the linear equations of a system (2-1); we ass u le
n independent observations. The unknowns s are to be the set
of all zonal and tesseral harmonics in the anomalous gravi-
tational field; thus N =

For simplicity we assume errorless data (n = 0) ; thus
the equations (2-1) have to be satisfied exactly . As we have
mentioned , such a complete set of solutions is obtained by let-
ting the matrix C vary in the solution (2—2). However , t h i s
representation is computationa l l y inconvenient since eacn ti m e
a large matrix B C B T would have to be inverted anew.

Practically more suitabl e is the representation , well-
known from the theory of sing ular matrix inverses (cf. Bjerha mii~a r .
1973 , p .378),

_ _ _ _ _ _  --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -- _ -
~~~~~~~~~
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~ x -t ( I  i~ N ) t i  , i/  t ’
~~

w her e

• 8 C B T(B’~~8 ’ ’  (2-29)

is a fixed generalized inverse of B , to be computed once for all
with an assumed fixed matrix C . The vector u is arb itrary ;

the desired set of solutions is obtained by letting U run t rm r ou gn

t h e set of a l l  possi ble vectors of infinitely many components for

which the infinite sums converge.
Having thus o btained the comp l ete set of solutions (~~-28),

one  may select special solutions by imposing suitable conditions.
The geodetically most meaningful condition is probably opti m a l
accura t y of the result , expressed in terms of minimum error vari-
ances. This con dition is known to be equivalent , f o r  e r r o r l e s s  d a t a ,

to the condition (2-3), C being the s ignal covariance matrix

(c f . Mor itz , 1972 , pp.38 and 122). Under this conditio n the solution

is given by (2-2). For this case we may put

u = ~~~
T ( B ~~~

T
)

_ 1  
- 8 x  ; (2-30)

infact ,on substituting this expression , (2-28) becomes (2-2).
A geophysica ll y interesting side condition is that the

solution s belong to a convex set describ ed by inequalities su ch
as

I

~ 0 , 2s , + S 2 5 , etc.

Pro blems of m i n i m i z i n g  the error variance (or other functions)

sub ject to such side conditions are dealt w i th in op tim iz ~~t i o r

1; 
~L::~ - ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~T - ~~~ ~~~
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theory (linea r and nonlinear programming).
In the problem of determi ning mass structures from gravity

data , the requirement that the obtained density be nonnegative
would lead to such side conditions.

In the geodetic inversion problem , the determination of
the external gravitational field , such conditions have never been
used and do not seem , in general , to have practical importance.
Howeve r , the condition that the total gravitational field shou ld
be generated by masses that are everywhere nonnegative , is a
physical requirement to be met. In “reasonable ” solutions it
seems to be more or less automatically satisfied , but a closer
look on the convexity problem in geodetical app lications may not
be without theoret ical interest , as has been pointed out to the
author recently by Prof. P.C. Sabat ier and Prof. 0.0. Jackson.

We finally mention the beautiful geometrical treatment of
underdetermined and overdetermined systems of linear equations in
(Lanczos , 1964, chapter 3).

3. Functional Representation
of the Gravitational Field

Let us now turn to an apparently quite different problem ,
the representation of the earth’ s external gravitational fiel d by
appropriate analytical functions.

Let the anoma lous potential T be approximated by a linear
combination f of suitable base functions ,p 1 ,~- 2 ,- - 3 ,...

T (P) = f(P) , (3-i)

P denoting the space point at which these functions are being



r’~ 
—

~~~~~ 

- - 

~~~
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~ 
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considered , and bk denoting suitable coefficients.
Since T is harmon ic outside the earth ’ s s u r f a c e , a l l  b a s e

functions must be harmon ic functions , too . They ma y, for

instance , be spherical harmonics or the potentials of point masses

suitably distributed below the earth’ s surface.
How are the coefficients bk to be determined? Assume ,

for the sake of simplicity and definiteness , that we are given
errorless values of I at n space points P . . Then it is
reasonable to use the approximation of T by a linear combinat i on
(3-1) of n base func tions and to postulate that f exactly

reproduces I at the n given points. Putting

T (P .) = f(P .) = f . , (3-2)

we thus have the conditions

k=l k k i  = f~ , (3-3)

which are n linear equations for the n unknowns bk , which
can be solved provided they are linearly independent.

With

= A i k (3 4)

we thus have
I

k = l~~~~~~~ 

= (3 5)

or in matrix notation ,

(3-6)

_ _

~

: _

~

_

~ 

_ _ _  _  _
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with the solut ion

b A 1 f (3-7)

Thus the dete rmination of the coefficients b k 
always invol ves

the solution of a n x n system of linear equation s , or the in-

vers ion of a n x n matrix.
An except ion would be the case that the mat rix A re-

duces to the unit matrix , that is

1 , i = k

= 
~ ik 

= , (3 8)

, i ~ k

the base functio ns for this case bei ng denoted by ~(P) instead

of p (P) . This means that the functions Xk are zero at all data

points except one , at which they assume the value 1 . Such

functions are ca lled sample functions; they have the pleasant

property that, by (3-7), b = f , so that (3-1) reduces to

f(P) 
k~~l

f
k X k~~~~ 

, (3-9)

the coefficients being simpl y the given values of the functio n f

at the data points Pk
Of course , it cannot be expected in general that A in

fact reduces to the unit matrix , but even if this is not the case ,

we can assoc iate a set of samp le functions X k 
to the given base

functions , by putting

X
k

(2)  =~~~A~~
’
~ s~ (P) , (3-10)

- 

.



p.— 
~~

-_——-.
~~~

-
~~~~

- - ---- -_=--—-.—- .—---- - --
~~~~~~

‘-----.--,-
~
---——---—- 

~~~~~~~~~~~~~~~~~~~~

15

where A~~~~T
’

~~ denote the elements of the matrix A 1 inverse
to A . In fact , putting P = P . in (3-10) we get

X k(Pj) =~~~ A~~
1) A 1~

= ~ A . .A~~~
> 

= ~~~. , (3-iflij j k

according to the definition of the inverse matrix , so that (3-8)
is satisfied . Further more, the substitution of (3-10) into (3-9)
gives

f(P) = 
~ 

A j k fk~~
.(P)

j = f lc = .1

= ~ b~~~(P) (3-12)
j=1

by (3-7), so that the sample function development (3-9) is iden-
tical to the original representation (3-1).

In this way we can , indeed , associate to each system of
base functions 

~ 1 ’ ~~2 ’ •
~~ 

and to each configuration of points
,P a system of sample functions x l ,~ 2 , . . . ,

~~ 
. This

has advantages if the same point configuration is used with
different data sets; then only the 

~k change , but the sample
• functions remain the same. As a matter of fact , also th is

approach requires , according to (3-10), the inversion of the
n x n matr i x A , but it need to be perfo rmed only once for a
given point configuration.

The type of sampl e functions best known in geodesy are
the functions of Giacagli a and Lund quist (1972) based en the
ty stem of spherical harmonics for regular point configurations
or to ~ Spher e . For ~~cn point c o nf i gu ra ti o ns
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it presents computational advantages and is preci sely equivalent
to a spherical -har m onic representation up to a certain degree.

Spherical harmonics and sample functions based on them
are suitable for a global representation. For local represen-
tations , potentia ls of buried masses or relat ed functions (m )ufour
an d Kova levsky , 1970) are more suitable; another possibility is
least-squares interpolation to be considered now.

The approximat ion of the potential T by a finite ~iear
combination of n base functio ns 

~k can , of course , reproduce
I only at n p oints , the data points. At other point s , f will
d e v i a t e  from T , that is , the error

= T (P) — f(P) (3-13)

wil 1 , in general , differ front zero. Of considerable importance is
obviously the question whether there exists a system of ba se
functions p k(P) for which , at every point P , the mean square
interpola tion error rn~ , defined by

= (3-14)

attains a minimum , M denoting a suitably defined statistical
expectation value.

The answer to this question is yes (which is by no means
a matter of fact). This lead s to least-squares interpolation due
to N. Wiener and A.N. Kolmog orov. A derivation is found in

- 
(Heiskanen and Moritz , 1967 , p.268). The result is

4’
k 
(P) = C (P

~
Pk) , (3-15)

where C(P ,Pk) is the cova riance function of T between points

_ _ _ _  
- -
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m~ and P , . Now tnis cov a r i arc e I J f l L t i O f j  a anmi ts t h e  representation

(~i~~ i tz , 1972 ,

- -

C (P ,Q) = ) < ( -
~
-—

~
--- ) P (cos , - ) , (3-16)

where k and R are constants , r and r are the spat~~..p
radius v~ o t o ’~ of P a n d Q , a n d P a r e  Le g en d r e ’ s p ol y n o m i a l s
as functions of tnn angle -~ be tw e e n  r~ and rQ . This re-

presenta ti on sh i~-,,s tha t C(P ,P,) , c o n s i d e r e d  as  a f u n c ti on  of P
is a harmon i c f~~nct i on , a n a l ytic eve ryw~ cre outs iO e a certain

s p h e r e .  f the r adius of thi s s p h e r e  is ch o sen so that the sphere

l i es com p l e t el y i ns id e t h e e a r t h , then the functions (3-IS) wi l l

be ar ?~ yt i c everywhere outs ide and on the earth ’ s su rface and can ,

t herefore , be used for represent ing the externa l gravitational

- o tential .

It i s a ge ne r~il p r i n c i p l e  of least—squares e s t iI t a t i o r ~ th~it

the r e s u  t does not depend strongly on the a p r i o r  ( o v a r i a ’ c v ~
use d. Therefore , if the actual covariance fun c tio n (3-16 ) 1~ d

f u n c t i o n  w h i c h  i s  t oo  c o m p l i c a t e d  fo r  p r a c t i c a l  us e ,  one i f i d y ,

w itnout appreciable loss of accuracy, rep i ace the actual function

~j a s u i t a b i e  approximation of a silli p le r  and more m a n a g e a b l e
a n a l y t i c a l  f~~r~ (i r practice , one w i l l  unyw ~iy ~it a rather S i I ; l e

anal ytical expression to em p i r i c a l l y obtained covarian ce O a t d ) .

Therefo-’e , a l s o  the functions (3-15) w i l l  be p r e c i s e l y d e f i n e - h
nar m on ic functions of a relativel y simp le analytical for~-~.p

By (3-4) and (3-15) we have now

A . = C ( P ,P .)~~~~C . , . ( 3 - i i )

E~ef i n ing the matrix C by

C = ~‘ C . ; TI , (3-18 ,

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  —
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b C 1 f . (3-19)

On introducing the vector

C (P) = ~ C (P ,P 1 ) , C ( P ,P~ ) , . . . ,  C (P,P )  , (3-20)

(3—1 ) thus takes the form

f(P) = C (P)C ’f , (3—21)

which is again the Wiener -Kolmo gorov predict ion formula (2-10).
It is clear that , on the basis of the functions (3-15)

for least -squares prediction , corresponding sample functi ons can
be defined by (3—10), each of which is zero at all data poin ts
except one , at which it takes the value 1.

Least—squares prediction shares with all representation
methods of type (3-1) the disadvantage that a (usually large)
n x n matrix has to be inverted ; it has , however , the advantage
that in this particular case the m atrix to be inverted is symmetric ,
being a covariance matrix (in the general case , the matrix A
is not symmetric ).

Taken in the form just described , the app lication of least -
squares prediction in geodesy is rather limited , essentiall y to
the prediction of gravity anomalies. In fact , however , geodetic
data are of many different types: horizontal and vertical angl es ,
distances , gravity measurements , d eflections of the vertical ,
satellite observations of many kinds , gravity gradients , etc. All
these geodetic data obviously share the properties that they
depend on the earth’ s gravitational field; therefore , on lineari-
zation , all of them may be expressed a linear functionals of the

--- — ---- ~~~ 
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anomalous po tential T . (Linear Functionals are by no m eans
restricted to linear functions but they in clude differential and
integral form ula s such as Stokes ’ int egral.)

So more general and geod etically more important is
the problem to fit the representation (3-1) to the data , so that
the n given funct i on al s of T are exactly reproduced . This is
the principle of collocation , which is frequently used in numer-
ical mathematics (cf. Co ll atz , 1966). If the base functi ons

~ç (P) are aga in to be determined by the least-squar es condition

of m i n i mum i n t e r p o l a t i o n  e r r o r  a t  a l l  p o i n t s P , then it is
natural to call the method least -squares collocation.

The solution has again the same formal structure as in
least—squares prediction. The result is

((P) = C (P,xk) , (3-22)

wh ich is the covariance between T (P) and the measurement
it is a function of the point P that is again harmonic and
analyt ic. The coefficients b k form ing the vector b are deter-
m i ned by

b = C~~ x , (3-23)

where C is the autocovariance matrix of the observation

vector 
~~~~~~~~~~~ 

(xk)
T h u s , with errorless data , leas t-squares collocation

determines the analytical form of the functions 
~k by the re-

quirement of optimal accuracy, whereas the data are exactly repro-
duced.

In general , the geodetic data w i l l  be affected by rando~i

measuring errors. Also in this case the cond i tion m~ = m in i m un
can be applied and determines sim u ltaneo u s~y
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(1) the bes t  ana l ytical expression for the functi ons ; ,

and

(2) the best v a l u e s  for tne coefficients b

E v e n  i n  t h i s  c a s e , t h e  f o r m a l  ex p r e s s i o n s  a r e  t h e s a m e
as b e f o r e , again b e i n g  given by (3—22) and (3-23). The measuring

errors have no influence on the choice of 
~k by (3-22), so

t h a t  :. again represent pure gravitational covar i anc e fu n ctions ,
t h a t  i s , analytical an d harmonic functions; again the leas t - sc ,~ G -es

p r i n c ip le serves only to s ing l e  ou t th e m o s t  su it a b l e  a n a l yt~ c a l
ex pression for the base functions : .  a m o n g  t he m a n y  poss ib l e
choices.

Where statistics enters directly is tn e determination of

t he  coe f f i c i e n t s  bk , wh i ch i s  d o n e  i n  su c h  a way tha t t he e f f e c t

of random data errors is minimized (therefore , the d a ta a r e  no
lor~ er exactly reproduced); in statistica l terminology, we n a v e

3 “best  linear estim ate ” :an unb iased estimate of minimum va n -

a nc e.
Expressions analogous to (3-1) may be given for any other

quantity of the anomalous gravitational field (called “signal”),
s u c h  as geo i da l  he i g h t s , d e f l e c t i o n s  of t he ve r ti c a l , gravity

a n o m a l i e s , e t c .  The c o e f f i c i e n t s  bk r e m a i n  the same s i n c e  they
depend only on the data x by (3-23). What changes are the base

func tions k the new base functions are derived by simp le

a n a l y ti ca l  o p era t i o n s  suc h as di f f e r e n t i a ti on , since a linear

operation performed on (3-1) acts on the base functions o. on l y.

Since these base function s are covariance fu nctions , these

operations are special cases of covariance propagation which p lays
a basic role in least—squares collocation: it has to carry th e
precise mathematical structur e of the gravitational field (cf .
M o r i t z , 1972 , pp .94-99).

Inclusion of Systematic Parameters. — A last restricti on
nas to be removed before least -squares collocation can be full y
applied to general geodetic problems. So far we hav e assumed t h at

_ _ _ _  ~~-- .~~~~~~~~~~~~“ ~~~~ -- -— ~~~~~ - - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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we deal only with q u a n t i t i e s  that have zero statistical expectatior .

s u c h  as  t he e l e m e n t s o f tn e a n o m a l o u s  g r a v it a ti o n a l  f i el d , so
t h a t sy st ema t i c  ef f e c t s hac  to b e r e m o v e d b e f o r e h a n d; we sh a l l
now free ourselves from this restriction.

We s h a l l , t n e r e f o r e , c o n s id er t he f o l l o w i ng mo d e l:

x = AX + s + n , (3-24)

where the vector x comprises the measured quantiti es , S
representing the part due the anomalous gravitational field and
n d e n o ti ng r a n d om m e a s u r i n g e r r o r s . T h e new com p o n e n t i s AX
where the vector X com p r i ses sys t ema ti c , nonran dor i parameters

an d A is a given matrix of coefficients.

This mo del is general enough to enc ompass all conceivable

geode t i c m e a s u r e m e n t s .  In  f a c t , a n y  geo d et i c  m e a s u r e m e n t ma y b e
split up, accor ding to (3-24), i n to t h r e e  p a r t s :

1. A systematic part AX in v o l v i n g ,  on the one hand , t h e

ellipsoidal reference system and , on the other hand , other para-
meters and systematic errors (originally non-linear functions are
again thought to have been linearize d by T a y l o r ’ s theorem);

2 . A random part S (of zero expectation) expressing the

effect of the ano m alous gravity field , and
3. Ran dom measuring errors n

As an example , consider a measurement of gravity, g

Here AX represents normal gravity ,- , as w e l l  as  sy s tem a ti c
errors such as gravi m eter drift; s is tne gravity anomal y .. g
and n stands for the measuring error. Other exa m ples wi l l  be
foun d in (M oritz , 1972 , pp .7 0 - 7 6 ) .

The formulas for estima ting X and s may be derived

from two different but equivalent m i n i m u m  p r i n c i p l e s :

1. From a least—squares pr i n c i p l e  corresponding to (2-5);

2. From the con dition of minimum varianc e (least standard

_ _ _ _ _  ~~.: ~~~~~~~~~~~~~~~ -- - - - .



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_

22

errors for estimated X and s ) .
The result is:

X = (A TC ’A) ’A~ C~~ x , (3-25)

S C C ~~ (x - A X )  . ( 3 - 2 6 )

The first equation is analogous to cl assical least-squares adjust-
inent by parameters , except that the covariance matrix C in-
cludes now covariances of the signal as well as those of the
measuring errors. The second equation is a fairl y obvious gener-
alization of the Kol m ogorov-Wiener formul a (2-10) or (3-21) to
the case in which the expectation of x is AX rather thar zero.

These formulas are an extension of th~e corresponding re-
suits for time series (Grenander and Rosenblatt , 1957 , p .87).

The present method , least—squares collocation with para-
meters , may be considered as a combination of least squares adjust-
ment and least-squares prediction into a unified scheme , which
makes possible the use of all conceivable geodetic data--classical
angle and distance measurements, gravity measurements , sate l lite
data of different kind , etc. --to obtain the geometric position of
points of the earth ’ s surface as well as the gravitational f ’e ld.

4. T h e  M a n y  F a c e t s  of C o l l o c a ti on

The Nature of Least-Squares Collocation. - In sec.2 we

have seen that , in important c a s e s , least-s quares collocation

reduces to a least-squares solution of an underdetermined system
of linear equations. It might thus seem that least-squares collo-
cation is essentially nothing else than classical least-squa r es
methods known from adjustment computations.

~

-,---- - — .— —-- -- ~~~~~ ~~~~~-~~“- — -
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In tryin g to answer this question , we shall first con sider
“ simple ” leas t—squares collocation , that is without estimation
of systematic parameters , so that we have A = 0 in (3-24) and
(3 26), this was also done i n sec .2 . P hys i c a l l y t h i s m e a n s  t ha t

the observations x are all quantities of the anomalous gravity
field.

In fact , every problem of simple least-squares collocation
can , in principle , be formulated as a system of linear equati o~ s
of the form discussed in sec.2. Every quantity of the anomalous
gravity field , for instance a geoidal height , a gravity anomal y ,
or a deflect ion of the vertical , c a n  b e ex p r e s se d as an  i n f i n it e
series of spherical harmonics , the coefficients of which constitute
the unknowns, the number N of which is obviously infinite. (Con-
vergence problems may be overcome by the use of Runge ’ s theorem
(Krarup, 1969 , p .54; Mor itz , 1971 , p.79).) Thus we always get a
systen of equations of type (2-9), as outlined in sec.2.

If N were finite , then the solution (2-6) would , in fact ,
correspond to classical least-squares since the condition (2-5) can
be written in the form

= mi nimum (4-1)

with

0

v

* 

— — 

(4-2)

and (2-4) takes the form of a condition equation for the vector v
What difference does the fact N = m a k e ?  The  s i g n a l  s p ace

is now no longer finite-dimensional but it is infinitely-dimensional
Hu bert space. The elements of Hu bert spaces may be infinite

. ~~~~~~~~~~~~~~~~~~~~
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vectors , such as s , but a l so functions of a certain k~ n d. In

the g r a v i t a t i o n a l  c a s e , we c o n v e n i e n t l y  cons iaer spaces of nar-

m o n i c  f u n c t i ons , m o r e  p r e c i s e l y ,  of functions nari ~on ic out~~iüe

a certain sp here.

There is a one—to-one corr espondenc o between such func-
tions and infinite vectors S (of norm < 

) by ta K ing s

as the vector of coeffic i ents of the spherica l -nar m onic expansion.

Th is makes it possible to avoid the use of infinite vectors (anc

corresponding convergence problems ) by working with funct ion ~
and linear operations on them. In this way, f o r m u l a s  of K o l m o g o r o v-
Wiener type (3-21) are obtained , which operate with finite

n x n matrices.
Another  way of link ing  c o l l o c a t i o n  ( i n c l u d i n g  s y s t e m a t i c

parameters ) with adjustment , this time ii finite-dimensional
space , was given in (Morit z , 1972 , pp. 12-15 ). There , however , tri e
signal values to be computed do not enter in the condition equa-

t ions althoug h they do enter into the minimum princip l e  v T pv
Thus the condition equa tions do not provide a comp le te fo rm u iat ~ or

as they do in ad justment comput ations , bu t mus t b e su p p l e m e n te d

by additional considerations: the new s ignals are related to the

observations no t by the condition equations , but tnr ou gh jo i nt

covariances. (The importance of joint covariances is wel l known

from wide—sense stationary stochastic processes wnere they carry
the total statistical structure. )

So the relation of collocation and adjustment is very

elusive: the analogies are stri K ing, but at tne very moment w h en
we think tha t we have hit on an exact identity we must recognize

a difference in a fine but essential point. For a more det a i l ed

discuss ion see also (Rummel , 1976). 

- .-~ --
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A much clos er relationship is between least-squares collo-
cation and the theory of pr ediction of statio nary stochastic pro-
cesses. In fact , the anomalous gravity potential may be conside r -ca
as a stochastic process on the spnere , or rather as a spatial
stochastic process that is harmonic outside a sphere.

The theory of stochastic processes provides a very con-
venient mathematical formalism and a statistical interpretation
and terminology (e.g., covariance functions). In fact , we have
seen at the end of the preceding section that the basic collocation
formulas (3—25) and (3-26) are precise analogues of the corre-
sponding results for prediction and parameter estimation of time
series.

Some kind of statistical interprediction is desirable to
get the geodetically important concept of accuracy (standard errors
of pr ad iction) into the picture. How seriously the statistical
interpretati on is taken , is a matter of controversy and also of

personal taste. The present author (Moritz , 1972 , secs.8 and 9)
favors an interpretation in terms of ~lorbert Wieners ‘covariance
of individual functions ” to take into account the fact that there
is only one earth and to avoid difficulties associated with the
stochastic process interpretation as pointed out b~ Lauritzen
(1973): it is impossible to find a stochastic process , harmonic
outside the sphere , that is ooth Gaussian and ergodic.

It is possible largely to p lay down toe statistical aspects ,

emphasizing Hu bert space geometry and considering the cov an iance
function as a kernel function in Hilo ert space , as Kraru a cia in
ril s fundamental paper (1969). ifl fact , an interpolation for:~;ui a
formally identical to the K olm og orov-Wiener predict i on for mul a is
obtained in the theory of kernel functions in Hu bert space

(Mesch kowski , 1962 , p.114) in a completely “determin i stic ” way,
without using any statistics.

It is well to em phasize the ara l ytica l nature of K er n e l
functions——w hich are precisely def ined nar i onic functions- -to

avo id the wron : iiLpress ~ on tnu t leu st— s. lu a re s co l location Inesses

I
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up eve ry th ing  s t a t i s t i c a l l y  and to show tha t  we have an unuer-
lying completely ‘ clean ’ analytical model . The elementary rca-
soning in sec.3 of the present paper is intended to serve the
same purpose.

Why , then , use a special name , “least-squares colloca tion
for the present geodetic method and not simp ly call it prediction?
The term prediction is usuall y understood to comprise interpo -
lation and extrapolation of time series and data of the sar~c
kind , for instance , gravity anomalies. The essence of the present
method , however , is the use of neterogeneous data , which are linear
functionals of the anomalous gravitational potential. As we have
seen in the preceding section , the fitting of a function to given
functionals is precisely the feature of collocation as understood
in numerical mathematics.

Th e name ‘least—squares collocation ” thus seems to be quite
suitable to characterize the present method as a representation
of the anomalous gravitational field by “clean ’ analytical func-
tions, which are selected and the coefficients of which are deter-
mined by a least—squares principle. 

-~~~~~~~~~~ ----- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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